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Characterizing Climate Change

• How will the mean climate change by 2100?
– will the globe warm up by 1.5 or 2.0 C?
– will the sea level rise by 1 or 2 feet?

–

• How will extreme weather change by 2100?
– Will there be more storms (TC, ETC, AR)? 
– Will storms make landfall more often?
– Will storms become more intense? 
– Will storms carry more water?
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Roadmap

• Extreme phenomena of interest
• Types of classification / categorization
• Typical input data from Earth System Models
• Supervised algorithms to detect these extremes
• Semi-supervised algorithms to detect extremes
• Training climate classifiers at Exascale
• Future directions for machine learning and extremes



Characterizing Extreme Weather…
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Climate Science Tasks

Liu, et al
ABDA’16

Racah, et al
NIPS’17

Racah, et al, NIPS’17
Kurth, et al, SC’17

Kurth, et al, SC’18



CAM5 0.25-degree simulation data



Challenge: Multi-Variate Data
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Task: Find Extreme Weather Patterns



Supervised Learning

•Training Input: Cropped, Centered, Multi-variate 
patches with Labels* 

–Tropical Cyclone (TC)
–Atmospheric River (AR)
–Weather Front (WF)

*Labels are provided by TECA, which in turn implements 
human-specified criteria

•Output: Binary (Yes/No) on Test patches
– Is there a TC in the patch?
– Is there an AR in the patch?
– Is there a WF in the patch?



CLASSIFICATION Image 
Dimension

Variables Total Examples

(+ve)                       (-ve)

Tropical Cyclone 32x32 PSL,UBOT,VBOT,TMQ,
U850,V850,T200,T500

10000 10000

Atmospheric 
Rivers

148x224 TMQ, Land Sea mask 6500 6800

Weather Fronts 27x60 T2m, Precip, PSL 5600 6500

Training Data



CLASSIFICATION Conv1 Pool1 Conv2 Pool2 Full Full

Tropical Cyclone 5x5-8 2x2 5x5-16 2x2 50 2

Atmospheric River 12x12-8 3x3 12x12-16 2x2 200 2

Weather Fronts 5x5-16 2x2 5x5-16 2x2 400 2

Supervised Convolutional Architecture



Logistic 
Regression

K-Nearest 
Neighbor

Support Vector 
Machine

Random 
Forest

ConvNet

Train Test Train Test Train Test Train Test Train Test

Tropical 
Cyclone 

96.8 95.85 98.1 97.85 97.0 95.85 99.2 99.4 99.3 99.1

Atmospheric 
Rivers

81.97 82.65 79.7 81.7 81.6 83.0 87.9 88.4 90.5 90.0

Weather 
Fronts

84.9 89.8 72.46 76.45 84.35 90.2 80.97 87.5 88.7 89.4

Hyper-parameter optimization applied with Spearmint for all methods

Supervised Classification Accuracy



Semi-Supervised Machine Learning

Objectives:
• Want to predict bounding 

box location for weather 
pattern 

• Want to discover new 
patterns despite few/no 
labels for several weather 
patterns

• Create unified architecture 
for all weather patterns 



Semi-Supervised Convolutional Architecture

Encoder Decoder

Classification + Bounding Box Regression



Reconstruction Results



Classification + Regression Results

Ground Truth
Prediction



Training at Exascale: Climate Dataset

• CAM5 0.25-degree output
– 1152x768 pixels, 3-hr
– 16 variables 
– 20 TB

• Ground Truth Labels for TC and AR 
– Heuristics for detection followed by 

mask creation

• Formulate segmentation problem
– 3 classes - background, TC and AR
– high imbalance - most pixels are 

background high variance - shape of 
events change over time and in-between 
themselves



Training at Exascale Hardware: Summit

•Leadership class HPC system at OLCF, ranked #1 on Top500 
•4608 nodes with 2 IBM Power 9 CPU and 6 Nvidia Volta GPU
•300 GB/s NVLink connection
•800 GB NVMe storage/node
•Infiniband network; fat-tree topology
•~3.45 ExaFlop theoretical peak (FP16)

Training code stresses all above 
components of the system



Segmentation Animation



Extreme Scaling

• 4560 Summit nodes, 27,360 Volta GPUs
• 1.13 EF peak performance (16-bit)



Deep Learning for Detecting Extremes: Definitions Matter

• Atmospheric Rivers (ARs): ”long, narrow, and 

transient corridors of strong horizontal water vapor transport…” 

(AMS Glossary)

• No community-accepted  standard for 
identifying  atmospheric rivers

“You know one when you see one” –
ARTMIP 2018 Participant

An AR off the coast of California. Source: TheGuardian



The ARTMIP Dataset

• The Atmospheric River Tracking 
Method Intercomparison Project 
(ARTMIP) includes AR detections 
from 14 algorithms in MERRA 
reanalysis data

• We explore CNNs’ ability to 
detect ARs in different fields: 
precipitable water and Integrated 
Vapor Transport

• We explore CNNs’ ability to 
detect ARs in different datasets: 
MERRA reanalysis and CAM5 
climate model

MERRA Integrated Vapor Transport 2000-01-01-00, shown 
with the mean of the 14 ARTMIP algorithms.

Shields, C. A., Rutz, J. J., Leung, L.-Y., Ralph, F. M., Wehner, M., 
Kawzenuk, B., … Nguyen, P. (2018). Atmospheric River Tracking 
Method Intercomparison Project (ARTMIP): project goals and 
experimental design. Geoscientific Model Development, 11(6), 
2455–2474. http://doi.org/10.5194/gmd-11-2455-2018



Can CNNs do Probabilistic ‘Segmentation’?

AR Confidence Index [probability]

Input Field: Integrated Vapor Transport (IVT)
Output Field: AR Confidence Index [probability]



CNNs Can do Probabilistic Segmentation

Input Field: IVT

Output Field: AR Prob.

Ground Truth
(white shading)

CNN Output
(white shading)



Evaluating the Neural Network

• Intersection over Union: a scale 
from 0 to 1 representing the 
similarity between the DL 
prediction and the ARTMIP labels

• Neural network trained on 
Integrated Vapor Transport: 0.90

• Neural network trained on 
Precipitable Water: 0.81 Source: PyImageSearch



Key Advantages of Deep Learning

• A single CNN detection algorithm can represent the 
uncertainty characterized by 14 AR detection algorithms

• CNNs can identify high-quality ARs from precipitable water, 
while most other tracking algorithms require a more memory-
intensive field: Integrated Vapor Transport

• CNNs can identify ARs in different categories of datasets 
(e.g. low-resolution, high-resolution, reanalysis, and future 
climate models)



ClimateNet: A path forward for labeled climate data

• Avoid heuristics; establish ground truth dataset for weather patterns
• Share both dataset + reference DL architectures w/ the community

Human 
Experts

ClimateNet
Dataset Unified Deep Network Model, satellite, 

observational datasets

Bounding Boxes

Class Labels

Segmentation Masks

Training Inference

Bounding Boxes

Class Labels

Segmentation Masks



ClimateNet Interface

• Avoid heuristics 
–Computer vision community 

1980-2010

• Ground Truth specified by 
experts using web 
interface

–Tropical Cyclones
–Atmospheric Rivers
–Extra-tropical Cyclones
–…

! https://www.nersc.gov/research-and-development/data-analytics/big-data-center/climatenet/

https://www.nersc.gov/research-and-development/data-analytics/big-data-center/climatenet/


Conclusions
• Machine Learning is viable for Pattern Detection in Climate Data:

– Truth data sets from experts or hand-tuned algorithms
– Supervised architectures can match their detection accuracy 
– Semi-supervised architectures may discover new patterns

• Training of Deep Learning is amenable to acceleration:
– Fast, hybrid methods for parameter optimization
– Moderns libraries enable good performance and scaling

• Continuing challenges:
– Scarcity of labeled data: Need labeling “campaigns”
– Interpretability and Visualization: ‘Black Box’ classifier

• Opens the door to semantic segmentation 
of climate datasets 



Open Challenges

• Handling Complex Data
– 2D/3D/4D, graph, sparse/dense, multi-spectral

• Lack of Theory (Machine Learning)
– Limits of supervised, unsupervised, semi-supervised learning

• Lack of Theory (Climate Science)
– Unambiguous definitions of phenomena of interest

• Interpretability
– Incorporating domain science principles (physical laws)

• Uncertainty Quantification
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Questions?


